Obiekt o średniej prędkości


Szybkość i szybkość przemiany pomiędzy energią kinetyki Potencjalna energia Najczęściej transformacja energii jest przemianą między potencjalną energią kinetyczną energii. Wznoszący się lub opadający obiekt doświadcza zmiany jego potencjalnej energii potencjalnej energii kinetycznej. W wahadle następuje ciągła transformacja między energią kinetyczną a potencjalną. Przyspieszenie opisuje szybkość zmian prędkości. Przyspieszenie jest wektorem. Jeśli obiekt nie zmienia kierunku, można opisać jego przyspieszenie jako szybkość, z jaką prędkość zmienia się. Aby określić przyspieszenie obiektu, musisz obliczyć jego zmianę prędkości na jednostkę czasu. prędkość przyspieszenia prędkość krańcowa (prędkość) minus prędkość początkowa podzielona przez czas EX: przyspieszenie Jaka jest średnia prędkość poruszającego się obiektu 18 000 metrów na godzinę lub 18 kmh. Jest bardziej tradycyjnie, naukowo, wyrażać prędkość w metrach na sekundę (ms lub ms-1), ponieważ są to jednostki SI odpowiednio na odległość i dystans. To również sprawia, że ​​matematyki łatwiej się wypracować, ponieważ nie musisz konwersji sekund na godziny 100 mw 20 s jest taki sam, jak 5 mw 1 s (100 20 5). Tak odpowiedź jest również 5 ms-1 (WIĘCEJ) 1 osoba znalazła ten przydatny Texas AM Electrical Eng. Stopień i US Navy RADAR Tech. Prędkość odnosi się do szybkości zmiany odległości obiektu, a także kierunku zmiany, gdzie szybkość odnosi się jedynie do szybkości zmian bez względu na uregulowanie piekielne, więc jeśli obiekt przemieściłby się w ogóle, to miałoby to średnia szybkość większa niż zero, więc nie. (WIĘCEJ) 7 osób uznało to za przydatne Średni czas to przebyta odległość podzielona przez czas spędzony w podróży. Samochód, który podróżuje 180 mil w ciągu 4 godzin, wykonał to ze średnią prędkością 1804 45 mil na godzinę hellip. Pszczoła, która przeleciała 5 metrów w ciągu 4 sekund, zrobiła to ze średnią prędkością 54,25 metra na sekundę. Jeśli potrzebujesz szybkości w innej jednostce, musisz ją przekonwertować. Samochód przeszedł również 451.609 72.405 km na godzinę (1 mila 1.609 km) Ślimak czołgał się przez patio w ciągu 4 godzin. Jeśli patio ma 9 metrów, to ile ślimaków jest średniej prędkości A: 2,25 metra na sekundę Formuła szybkości to speeddistancetime (WIĘCEJ) 78 osób uznało to za przydatne Odpowiedz przez The WikiAnswers reg Community Uczynienie lepszego świata, jednej odpowiedzi naraz . Można to mierzyć przez obliczenie odległości poruszonej przez poruszający się obiekt w określonym przedziale czasowym. Czy ta odpowiedź była przydatna? Tak, trochę Nie Dzięki za sprzężenie zwrotne Odległości podzielonej przez czas potrzebny na pokrycie odległości, równa się średniej prędkości na jednostkę czasu. Na przykład: obiekt zajmuje 0,5 sekundy na pokrycie 1 stopy. 1 hellip podzielony przez 0,5 równy 2 (10.52), więc podróżuje ze średnią prędkością 2 stóp na sekundę. (WIĘCEJ) 13 osób uznało to przydatneCalculating Average Speed: Problemy z Formułą W tej lekcji dowiesz się, jak obliczać średnią szybkość obiektu. Diagramy, wykresy i przykłady pomogą Ci zrozumieć tę koncepcję i jej metodę obliczania. Jaka jest średnia szybkość Ty i twój przyjaciel postanowili zabrać ze sobą nowy samochód sportowy. Twój samochód może przyspieszyć do 220 mph. Przejechałeś 45 mil w ciągu 1,25 godziny. Pod koniec podróży Twój przyjaciel informuje, że średnia prędkość podróży wynosi 36 km na godzinę. Byłeś przerażony. Zapytałeś siebie, jak samochód sportowy może mieć taką żałosną średnią prędkość i próbowałeś przypomnieć, ile za to zapłaciłeś? Co to jest średnia prędkość Średnia przeciętna prędkość obiektu to całkowita odległość pokonana przez obiekt podzielony przez czas, jaki upłynął na pokrycie tej odległości. Jest to ilość skalarna, co oznacza, że ​​jest ona określona tylko wielkością. Pojęcie związane ze średnią prędkością jest liczbą wektorową. Ilosc wektora jest definiowana przez wielkosc i kierunek. Na przykład możemy powiedzieć, że samochód ma średnią prędkość 25 mil / h. Jego średnia prędkość może wynosić 25 mil na godzinę na wschód. Średnia prędkość może być postrzegana jako szybkość zmiany odległości względem czasu. Samochód, który podróżuje ze średnią prędkością 25 mil / h średniej odległości 25 mil co godzinę. Obliczanie średniej prędkości Jeśli obiekt przemieszcza się ze stałą prędkością, to formuła szybkości obiektu jest określona przez, Całkowita odległość to odległość pokonana przez obiekt przy stałej prędkości. Czas, który upłynął, to czas, w którym obiekt zajmował całą odległość. W większości przypadków obiekt będzie poruszał się z różną prędkością na pewnej odległości. Na przykład samochód podróżujący z jednego miasta do drugiego rzadko przemieszcza się ze stałą prędkością. Jest bardziej prawdopodobne, że prędkość samochodów będzie wahać się podczas podróży. Samochód może poruszać się z prędkością 65 mph przez pewien czas, a następnie spowolnić do 25 mph. Jest możliwe, że w pewnych momentach samochód jest nawet w pełnym zatrzymaniu (na przykład w czerwonym świetle). Aby obliczyć średnią prędkość samochodów, nie dbamy o wahania prędkości. Dbamy tylko o całkowitą odległość pokonaną przez samochód i czas, który upłynął, aby pokryć tę odległość. Wzór średniej prędkości Ważne jest, aby pamiętać, że ta formuła jest identyczna jak w przypadku stałej prędkości. Średnia prędkość jest mierzona w jednostkach odległości na czas. Jednostki wspólne obejmują mile na godzinę (km / h), kilometry na godzinę (km / h), metry na sekundę (ms) lub stopy na sekundę (fts). Jeśli chodzi o nowy, czerwony samochód sportowy, twój przyjaciel miał rację w obliczaniu średniej prędkości. Użył odległości przebytej przez samochód (45 mil) podzielonej przez upływający czas (1.25 godziny). Budowa autostrady i seria czerwonych świateł na drogach lokalnych naprawdę zwolniły cię. Wysoki czas, jaki upłynął, powodował niską średnią prędkość. Spójrzmy na inne przykłady średniej prędkości: 1. Załóżmy, że pociąg towarowy pokonuje dystans 120 mil w ciągu 3 godzin. Jaka jest średnia prędkość pociągu Średnia szybkość zarobienia College Credit Czy wiesz, że mamy ponad 79 kursów przygotowujących do egzaminów, które są akceptowane przez ponad 2000 uczelni wyższych. Możesz testować z pierwszych dwóch lat college'u i zaoszczędzić tysiące poza stopniem. Każdy może zarabiać na egzaminie kredytowym niezależnie od wieku lub poziomu wykształcenia. Przenoszenie kredytu na wybraną szkołę Nie wiesz, do jakiej uczelni chcesz się uczęszczać Studium zawiera tysiące artykułów dotyczących każdego wyobrażalnego stopnia, obszaru studiów i ścieżki kariery, które pomogą Ci znaleźć odpowiednie dla Ciebie szkoły. Szkoły badawcze, stopnie kariery Kariera Znajdź bezstronne informacje potrzebne do znalezienia właściwej szkoły. Przeglądanie artykułów według kategorii Prędkość poruszania Ruch obiektów jest opisany w oddziale fizyki tj. Kinematyka wchodząca w zakres mechaniki. Badane są takie określenia, jak ilości skalarne i wektorowe, przesunięcie i odległość, prędkość, przyspieszenie i prędkość, które są męskie wykorzystywane do ruchu obiektów. Ilości wektorów są wyjaśnione przez ich wielkość w kierunku, podczas gdy skalarny jest używany tylko ich wartość liczbowa bez wyjaśnienia kierunku. Szybkość liczby skalarnej pokazuje trwałość dowolnego obiektu, jak szybko obiekt może zostać przeniesiony. Wartość prędkości jest równa zeru, gdy obiekt nie jest poruszany. Jest to w zasadzie odległość, która jest przykryta przez poruszający się obiekt. Kiedy obiekt jest poruszany, ulega on wielu zmianom prędkości. Więc igła prędkościomierza ciągle przesuwa się w górę lub w dół, aby pokazać prawidłową prędkość w określonym czasie. Jednak średnia wszystkich prędkości pokazuje cały ruch obiektu w określonym przedziale czasowym. Pozwala omówić średnią prędkość i jej rozwiązanie do rozwiązywania problemów. Średnia szybkość definicji Średnia szybkość, jak widać z samej nazwy, jest średnią prędkości poruszającego się obiektu dla całkowitej odległości, którą pokrywa. Średnia prędkość jest związana z odległością pokonywaną przez przedmiot i jest wielkością skalarną, co oznacza, że ​​jest ona reprezentowana tylko przez wielkość i kierunek jazdy nie jest ważna. Wzór średniej prędkości jest obliczany poprzez znalezienie stosunku całkowitej odległości, która jest objęta obiektem do czasu potrzebnego na pokrycie tej odległości. To nie jest średnia szybkości. Równanie dla średniej prędkości podaje się następująco: średnia prędkość i średnia prędkość są również związane, takie jak prędkość i prędkość. Średnia prędkość jest stosunkiem całkowitego przesunięcia obiektu w danym czasie. Podczas gdy średnia prędkość jest związana z przemieszczeniem obiektu, średnia prędkość jest związana z całkowitą odległością pokonywaną przez obiekt. Równanie (2) reprezentuje średnią prędkość formuły obiektu poruszającego się z różną prędkością. Średnia prędkość jest czasami źle zrozumiana dla szybkości chwilowej. Oba są różne od siebie, przy średniej prędkości całkowity czas jest duży, podczas gdy w chwilowym ograniczeniu prędkości przypadek prędkości, w której czas zbliża się do zera. Problemy z średnią prędkością Poniższe przykłady pomogą nam zrozumieć, jak obliczać średnią prędkość. Rozwiązane przykłady Pytanie 1: biegacz biegnie na torze spotykają się. Dokonuje 800 metrów okrążenia w 80 sekund. Po zakończeniu jest w punkcie wyjścia. Oblicz średnią prędkość runnera podczas tego okrążenia Rozwiązanie: w celu znalezienia średniej prędkości biegacza, musimy znaleźć całkowitą odległość pokonaną przez niego i całkowity czas potrzebny na wykonanie tej odległości. W tym przypadku pokonana odległość wynosi 800 metrów, a następnie ukończyła w 80 sekund. Więc, stosując wzór dla średniej prędkości mamy S AVG frac. S AVG 10 ms, więc średnia szybkość biegacza na torze wynosi 10 ms. Pytanie 2: Człowiek podróżuje samochodem z miasta A do miasta B iz powrotem. W podróży z miasta A do miasta B podróżuje z prędkością 40 km / h i podróżuje 45 km / h, podczas gdy wraca. Całkowita podróż trwała 3 godziny. Znajdź średnią prędkość samochodu na całą trasę Jak widać, że mamy szybkość w obu kierunkach, można obliczyć średnią prędkość średnią, używając średniej prędkości, ale jest to błędne podejście. Załóżmy, że odległość pomiędzy dwoma miastami wynosi D. Czas trwa równy 3 godziny, aby zakończyć podróż okrążeniową. Załóżmy również, że czas podany od A do B wynosi nie więcej godzin, więc czas podany w B do A wynosi 3 godziny. Teraz prawidłowe podejście do określania średniej prędkości jest następujące: najpierw znajdź odległość w obu kierunkach. D AB 40 razy t D BA 45 razy (3 - t) Ponieważ zarówno odległość D, jak i D są takie same (od miasta A do B i od miasta B do A), można powiedzieć, że DD 40 razy t 45 razy (3 - t) 40t 135 - 45t 85t 135 tfrak t 1,59 godziny Więc czas z miasta A do B wynosi 1,59 godziny, a czas od miasta A do B wynosi 1,41 godziny. Teraz znajdziemy odległość pomiędzy miastem A do B to czasami DS, t D 40 razy 1.59 63.53 kms. Więc średnia prędkość podróży okrężnej to S frac D) T) od czasu DD, weźmiemy to D. Więc, całkowita odległość wynosi 127,05 km 2D, wprowadzając te wartości w powyższym równaniu w celu znalezienia średniej prędkości Sfrac S 42,35 km / h. Pytanie 3: Vikram pojechał samochodem przez 3 godziny z prędkością 60 mil na godzinę i przez 4 godziny przy prędkości 50 mil / h. Znajdź jego średnią prędkość w podróży Rozwiązanie: W celu obliczenia średniej prędkości musimy znaleźć całkowitą odległość pokonaną przez Vikram. D 1 60 razy 3 180 km D 2 50 razy 4 200 km W związku z tym całkowita pokonana odległość wynosi D D 1 D 2 D 180 200 D 380 mil Więc średnia prędkość to S AVG frac S AVG frac S AVG 54,29 km na godzinę. Tak więc, średnia prędkość podróży vikrams samochodem wynosi 54.29 mil na godzinę. Pytanie 4: Panie B i Pan A jeździć rowerami z domu do szkoły, która jest 14,4 km od domu. Trzeba 40 minut, aby przyjechać do szkoły. Pan B przychodzi po 20 minutach od pana A. Znajdź, ile szybciej pan A porusza się w stosunku do rozwiązania pana B: odległość pokonana przez nich wynosi 14,4 km. Pan A kończy to za 40 minut, a Pan B trwa 20 minut więcej niż pan A, więc pan B wypełnia go w 60 minut. Tak więc różnica prędkości Mr. A i Mr. B to: SA - SB 21.6 - 14.4 7.2 Tak, Pan A jest o 7,2 km / h szybszy od Pana B. Pytanie 5: Samochód podróżuje z prędkością 30 mph od miasto A do B iz powrotem z miasta B do A z prędkością 40 mph. Znajdź średnią prędkość Rozwiązanie: w celu znalezienia średniej prędkości samochodu należy najpierw zidentyfikować całkowitą odległość równą dwukrotności odległości pomiędzy miastami A i B. Czas z A do B to frac Czas pobierany z B na A jest frac

Comments

Popular Posts